Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35477860

RESUMO

Voltage-gated calcium channel Cav2.1 undergoes Ca2+-dependent facilitation and inactivation, which are important in short-term synaptic plasticity. In presynaptic terminals, Cav2.1 forms large protein complexes that include synaptotagmins. Synaptotagmin-7 (Syt-7) is essential to mediate short-term synaptic plasticity in many synapses. Here, based on evidence that Cav2.1 and Syt-7 are both required for short-term synaptic facilitation, we investigated the direct interaction of Syt-7 with Cav2.1 and probed its regulation of Cav2.1 function. We found that Syt-7 binds specifically to the α1A subunit of Cav2.1 through interaction with the synaptic-protein interaction (synprint) site. Surprisingly, this interaction enhances facilitation in paired-pulse protocols and accelerates the onset of facilitation. Syt-7α induces a depolarizing shift in the voltage dependence of activation of Cav2.1 and slows Ca2+-dependent inactivation, whereas Syt-7ß and Syt-7γ have smaller effects. Our results identify an unexpected, isoform-specific interaction between Cav2.1 and Syt-7 through the synprint site, which enhances Cav2.1 facilitation and modulates its inactivation.


Assuntos
Canais de Cálcio Tipo N , Terminações Pré-Sinápticas , Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
2.
Cell ; 157(5): 1216-29, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855953

RESUMO

The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Técnicas de Cultura de Células , Embrião de Mamíferos/citologia , Camundongos , Camundongos Knockout , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...